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\ /\ 2013 AFOSR SPRING REVIEW
¥ 30010 PORTFOLIO OVERVIEW

Pulsewidth Bandwidth ‘ L

The program aims to understand and control light sources exhibiting

extreme bandwidth, peak power and temporal characteristics.

Portfolio sub-areas: optical frequency combs, high-field science,
attosecond physics.
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N\’/ Applications of USP Lasers

s*

Particle Acceleration
ultrahigh electric field gradients

Metrology
stabilized, ultra-wide bandwidth

» Ultra-stable freq sources

» Optical waveform synthesis
» High precision spectroscopy
* Frequency/time transfer

* High-capacity comms

e Coherent LIDAR

* Table-top GeV electron
accelerators

* MeV ion sources for
imaging

* |sotope production

* Hadron tumor therapy

* Proton-based fast * Optical clocks
ignition « Calibration
Secondary Radiation Sources Propagation in media Material Science
generation of particle & photons self-channeling ultrashort, high peak power
* High power THz generation - Remote sensing « Surgery
* Extreme ultraviolet - Remote tagging « Chemical analysis (LIBS)
lithography « Directed energy « Surface property
* Biological soft x-ray « Electronic warfare modification
microscopy * Countermeasures * Non-equilibrium ablation
* Non-destructive evaluation o Advanced sonar « Micromachining
* Medical imaging/therapy - Ultrafast photochemistry

* Attochemistry

AFR

DISTRIBUTION A: Approved for public release; distribution is unlimited



\/ Outline

— Microresonator-based optical frequency combs

— High peak power, ultrashort pulse laser processing
of materials

— Extreme ultraviolet (EUV) comb spectroscopy

— High harmonic interferometry

B9 — Relativistic optics

Photo credits: DOI: 10.1038/nature05524,
www.attoworld.de, E. Chowdhury (OSU) DISTRIBUTION A: Approved for public release; distribution is unlimited
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\ Z Optical frequency combs:
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\J Metrological applications
g of optical frequency combs
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Molecular
spectroscopy

Arbitrary
optical/RF

clocks waveforms
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Optical power (dBm)

doi:10.1038/nature06401

Source: Braje, Physics 3, 75 (2010)
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Why microresonators?
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/’\ (FY12 BRI) Microresonator-based

RS optical frequency combs
| S- Diddams * Initiative aimed at exploring the fundamental
NIST physics of microresonator comb generation.

=5 Q. Lin * Six efforts exploring:
B B RO R

— Spatio-temporal field mapping and

] A Gaeta control
4 Cornell - i . .
| — Silicon-carbide microdisks
; JA. Matsko L L
B DoEwaves — Silicon nitride resonators
_ — Mid-IR microresonators
" ' A. Weiner
PURDUE — Time domain characterization
¢ A. Willner — Dispersion tailoring via slotted
2 waveguides
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/’\ Temporal and Spectral
Qr Comb Generation Dynamics
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Pl: Alex Gaeta, Cornell
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/)\ Temporal and Spectral
Qe Comb Generation Dynamics

0 S
PI: Alex Gaeta, Cornell

Optical spectrum
20F 1 | [ T | [ T | [ ]

<G N

1500 1520 1540 1560 1580 1600 1620 1640 1660

Power (dB)

) Wavelength (nm

.*“E-" Temporal output gth (nm) RF spectrum

:? I | I I I I
fo) — =10 -
L Q i

c — -80H —
Q ) i -
© 2

© S - RTCO MR
*g | |

% 0 20 40 60 80 100
< Time (ps) RF Frequency (MHz)

Transition to modelocking?

Source: http://arxiv.org/abs/1211.1096v3 DISTRIBUTION A: Approved for public release; distribution is unlimited

22

AFR



.
N Ultrashort Pulses at 99 GHz
«Qr
20" U T Td e 10 ! ! '—> -
= I .% 0.8kL 10.1 ps .
T -40F °© 06k 160 fs -
sk S oall e
S -60F S ool '
o e
-80 “i < op I l l |
1530 1540 1550 1560 0 10 20 30 40 50
Wavelength (nm) Time (ps)
c 10F : L -
S
. g 081 i
e 99-GHz repetition rate O 06 =
§ 0.4 - —
e 160-fs pulses 3 oz -
0 1 \ I . I
-200 0 200
Delay (fs)
AFR ”

Source: http://arxiv.org/abs/1211.1096v3 DISTRIBUTION A: Approved for public release; distribution is unlimited




A ) _
\/ Outline

4% — High peak power, ultrashort pulse laser processing
of materials
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Lon laser pulse damages adjacent structures
UItrashort pulses > no collateral damage
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Source: C. Momma, A. Tunnermann et al., Opt. Commun. 129, 134 (1996)
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Time-dependent

Processes In materials
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&/} H'Qh peak power, ultrashort pulse
< laser processing of materials

PI: Chunlei Guo, U of Rochester

Qe

* Ultrashort laser pulses open up novel
possibilities and mechanisms for laser-solid Colorized metals

interactions. , ‘

* Demonstrated femtosecond laser processing
and surface texturing techniques to engineer
surface structures & properties (e.g. darkened
& colorized metals, hydrophilic & hydrophobic
surfaces).

Hydrophilic

27
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\ J (FY13 BRI) High peak power, ultrashort
\.-‘,/ pulse laser processing of materials

S. Yalisove

MichiganEngineering

P. Polynkin
THE UNIVERSITY
{ OF ARIZONA.

Chowdhury
Wl OHIO SIATE

Initiative aimed at developing a fundamental -
understanding of intense field laser
ablation/damage in the femtosecond regime.

Three multi-PI efforts exploring:

— Dynamics of ionization

— Fundamental dynamics of laser ablation
— Defect states in multi-pulse interaction
— Effect of structures on laser damage

— First principle-based models, non-

adiabatic quantum MD, classical MD
— Vary A=400nm —4 um, T=5-1000 fs
— Complex beam shapes (Bessel, Airy,
vortex, SSTF beams)

— Novel laser-matter interaction geometries
(confined microexplosions, SSTF
excitation, few-cycle pulses)

Gratings

28
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— Extreme ultraviolet (EUV) comb spectroscopy

Photo credits: DOI: 10.1038/nature05524, AFR

www.attoworld.de, E. Chowdhury (OSU) DISTRIBUTION A: Approved for public release; distribution is unlimited
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4 High Harmonic Generation (HHG)
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Microscopic single-atom
physics of HHG
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guantum simulation
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?\/ Direct Frequency Comb Spectroscopy

°r INn the Extreme Ultraviolet

Pl: Jun Ye, U of Colorado
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Outline

— High harmonic interferometry
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%/ High Harmonic Interferometry to

.; follow chemical reactions

Pl: Paul Corkum, NRC
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\/’\ Conical intersections drive the
by chemistry of complex molecules

\

lonization light

Conical intersection
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& J Conical Intersection
\.,\,/ Dynamics in NO,

Pl: Paul Corkum,
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%/’\ Electronic dynamics near
Ry a conical intersection
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Outline

— Relativistic optics
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%/ Progress in peak intensity

* OQOver the last two decades, a 6 order of magnitude increase in achieved

focused intensities in table-top systems.

Source: CUOS website
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Relativistic ions
Nonlinearity of vacuum

GeV e acceleration
e+e- production
Nuclear reactions

Relativistic plasmas
Hard x-ray generation

Tunnel ionization
High temperature plasma formation
Bright x-ray generation

Nonperturbative atomic physics
High order nonlinear optics

Perturbative atomic physics
Nonlinear Optics
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Petawatt class university lasers

University of Texas, 1.1 PW University of Nebraska, 0.7 PW

Texas Petawatt Laser

The Center for High Energy Density Science

July 16, 2012
First Light
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/ Laser-driven x-ray sources
b

Picture: Courtesy of Kwei--Yu Chu and PI Kram er Akl | ’ OSU

Lawrence Livermore National Laboratory

* Understanding laser-generated
electron beam characteristics is
the key to advancing x-ray
sources.

Hot electron generation

temperature (log) for species 1 at 140.01 fs
10 " 1

e TS ik s
%5{*”% 4 : 65

* PIC simulations of high intensity
short pulse laser interacting with
structured targets yields an

enhancement in the number and )
energy of hot electron. .
1% 5
Enhanced x-ray production ;
e Monte Carlo simulations using the "3

electron beam source from PIC .
show enhancement of x-ray %
production. £

E 2 0w

Energy (MeV)
40
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\. o~/ Laser-driven x-rays generation
@\.;/ (0.1 — 10 MeV)

* Scattering from a 300 MeV electron

beam can Doppler shift a 1-eV energy Conventional Synchrotron  Thomson Scattering
laser photon to 1.5 MeV energy. fed —
gnet laser

undulator f—[]

* Demonstrated > 710 MeV electron beams
with no detectable low-energy
background.

~ *om = -
- " <1lum

S

x-ray (o = 4y%0,)

Scattering
Laser Pulse

Energy tunability from 0.1 — 0.8 GeV.

for generating x-rays via ] Monloer(\;_ergetiC: Al?lfg 10 "{;
Thomson Scattering Oow angular divergence: 1-o mra

¢ Pulse p < 4
prive Loy > 710 MeV
- electrons

200 400 600 800
Energy (MeV)

Experimental geometry
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Laser-driven x-rays generation
(0.1 - 10 MeV)
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/’\ Brighter, more energetic and tunable
b than conventional synchrotrons

Pl: Donald Umstadter, U of Nebraska

1081
1 029 _ Diffraction-Limited XRLs
A A
a
1007 —
Saturated XRLs
[

Compton
Light Source

25 — @
10 Ta XRL
1 023 I
Harmonic Spring 8 Undulators

Generation

1020 —

101° —
He—\ike(

1 01 7 I /Ti LPP
Spring 8 Wiggler

|

Peak Brightness [N/(s mm? mrad? 0.1% bandwidth)]

1015 [Spring 8 Bend
APS Wiggler
il
1 013 FAPS Bend
Cu-K
u-Focus

u-Fochs

10™M | Mo-K
| | |

I
103 102 101 100 10t 102 108 104
X-Ray Energy (keV)

I |

10¢
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(FY14 BRI) Laser-matter interactions in
the relativistic optics regime

. Laser-driven electron acceleration

Laser Wakefield Acceleration: Electrons
are accelerated to gigaelectronvolt (GeV)
energies over centimeters distances

Direct Light Acceleration

. lon acceleration

Protons and ions are accelerated to
megaelectronvolt (MeV) energies by a
mechanism known as ‘target normal
sheath acceleration’ (TNSA)

e X-ray radiation sources

keV to MeV x-rays via non-linear Thomson
Scattering

Ka monochromatic emission
Bremsstrahlung broadband radiation

. Neutron sources

Protons incident on a secondary target
(e.g. Lithium) can produce MeV neutrons

* QED physics

DISTRIBUTION A: Approved for public release; distribution is unlimited

electron bunch

Electron density distribution and generation of quasi-
monoenergetic electron bunches observed in PIC simulations.

Titanium foil with
proton-rich dot

e —
Laser incidence ) \\\‘
Accel d t'
\ ccelerate
% o protons be
). S
b}
e
Blow-off Hot electron
plasma cloud
. e®
>
® ~
2
~ Targetnormal,
quasi-static
electric field

Target Sheath Normal Acceleration: Laser acceleration of
protons from the back side of a microstructured target.

AFR

Electron number density

Laser pulse

Trapped monoenergetic
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The program aims to understand

Power T
---------- WW[ -« and control light sources exhibiting

extreme temporal, bandwidth and

f—| peak power characteristics.

Pulsewidth Bandwidth A L

Optical frequency combs High-field laser physics
ultra-wide bandwidths high peak powers

* Spectral coverage to exceed an
octave with high power/comb.
* Coherence across EUV-LWIR.

* Novel resonator designs (e.g. Compact particle accelerators.
micro-resonator based). High peak power laser

« Ultra-broadband pulse shaping. architectures.

* High repetition rates.

* New wavelengths of operation.

Laser-solid interactions.
Fs propagation in media.

Sources of secondary photons.

Attosecond science
ultrashort pulsewidths

» Efficient, high-flux generation.

*  Pump-probe methods.

* Probe atoms/molecules &
condensed matter systems.

» Attosecond pulse propagation.

* Novel attosecond experiments.

* Fundamental interpretations of
attosecond measurements.
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